
Exploitation of Latent Allostery
Enables the Evolution of New Modes
of MAP Kinase Regulation
Scott M. Coyle,1,2 Jonathan Flores,1 and Wendell A. Lim1,3,*
1Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco,

San Francisco, CA 94158, USA
2Program in Biological Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
3UCSF Center for Systems and Synthetic Biology, San Francisco, CA 94143, USA
*Correspondence: lim@cmp.ucsf.edu

http://dx.doi.org/10.1016/j.cell.2013.07.019

SUMMARY

Allosteric interactions provide precise spatiotem-
poral control over signaling proteins, but how allo-
steric activators and their targets coevolve is poorly
understood. Here, we trace the evolution of two
allosteric activator motifs within the yeast scaffold
protein Ste5 that specifically target the mating MAP
kinase Fus3. One activator (Ste5-VWA) provides
pathway insulation and dates to the divergence of
Fus3 from its paralog, Kss1; a second activator
(Ste5-FBD) that tunesmating behavior is, in contrast,
not conserved in most lineages. Surprisingly, both
Ste5 activator motifs could regulate MAP kinases
that diverged from Fus3 prior to the emergence of
Ste5, suggesting that Ste5 activators arose by ex-
ploiting latent regulatory features already present in
theMAPKancestor. Themagnitude of this latent allo-
steric potential drifts widely among pre-Ste5 MAP
kinases, providing a pool of hidden phenotypic diver-
sity that, when revealed by new activators, could
lead to functional divergence and to the evolution
of distinct signaling behaviors.

INTRODUCTION

Eukaryotic signaling proteins display highly diverse and diver-

gent allosteric regulation. Although any one genome might

contain many evolutionarily related signaling molecules, such

as protein kinases, individual family members usually display

divergent substrate specificity and unique allosteric regulation

by various partner proteins. By controlling when and where

signaling proteins are activated, these allosteric regulatory inter-

actions play a central role in determining the specificwiring of the

molecular networks that control cellular behavior (Figure 1A).

Despite their importance, little is known about how these com-

plex allosteric regulatory partnerships in signaling networks

evolve. The molecular complexity of these systems represents

a challenge for evolution: allosteric activators and the target pro-

teins that they act on must seemingly acquire their complemen-

tary regulatory properties simultaneously for these systems to be

functional and provide a selective advantage. These allosteric

activators must also be specific enough to ensure that they do

not inadvertently target homologous signaling components in

the cell. The viable paths by which such multicomponent regula-

tory systems can evolve are therefore unclear.

In other complex systems,many new features appear to evolve

by taking advantage of pre-existing or latent behavior: an active

site that catalyzes a particular reaction can, with increased pro-

miscuity, perform similar reactions on other substrates; a binding

pocket that favors binding of one nuclear hormone can be

adapted to accommodate a yet-to-be evolved hormone with

somewhat similar structural features (Aharoni et al., 2005; Baker

et al., 2012; Bridgham et al., 2006; O’Brien and Herschlag, 1999;

Khersonsky and Tawfik, 2010; Wise et al., 2005). Although such

latent capacities provide clear toeholds for new enzymatic activ-

ities or ligand binding capacities, these changes represent a shift

in an alreadywell-established and constitutivemolecular activity.

It is thus unclear the extent to which these evolutionary models

apply to allosteric systems in which new protein partnerships

must develop that are unrelated to any existing form of regulation

and that must produce complex structural reorganization.

Computational and protein engineering studies suggest that

certain features of protein structure and dynamics may endow

proteins with some latent capacity for allosteric regulation

(Lee et al., 2008; Reynolds et al., 2011). Whether natural

systems have harnessed such latent features to produce new

allosteric regulation during evolution, however, has not been

established.

Comparative studies that track the appearance of specific

molecular properties across related species were instrumental

in uncovering how new enzymatic activities, receptor/ligand

pairs, and transcriptional circuits evolve (Afriat et al., 2006; Booth

et al., 2010; Gerlt and Babbitt, 2001; O’Brien and Herschlag,

2001; Roodveldt and Tawfik, 2005; Taylor Ringia et al., 2004).

However, applying these approaches to multicomponent allo-

steric regulation of signaling proteins has been hindered by a

lack of model systems that can be biochemically interrogated

over species spanning a considerable window of evolutionary

time.
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The budding yeast MAP kinase network presents a unique

model system with which to take a comparative approach to

understand how complex multicomponent allosteric regulation

might have evolved. Prior biochemical studies have shown that,

in S. cerevisiae (S. cer.), the function of the mating-pathway-

specific MAP kinase Fus3 requires its allosteric activation by

the scaffold protein Ste5 (Figure 1B). This scaffold-mediated allo-

steric activation ensures that Fus3 is only activated in signaling

complexes that are organized in response to pheromone stimula-

tion, thus preventing inappropriate crosstalk in which distinct

MAP kinase-mediated pathways might trigger mating (Zalatan

et al., 2012). Interestingly, the closely related starvation-respon-

sive MAP kinase, Kss1, functions independently of Ste5 scaffold

regulation, despite the fact that Fus3 andKss1 are 55% identical,

both are targets of the MAPKK Ste7, and both likely arose from

duplication of the same Erk-likeMAP kinase ancestor (Figure 1C)

(Madhani and Fink, 1998).

Given their common MAPK ancestor, how did Fus3 become

dependent on allosteric regulation, whereas Kss1 did not? The

availability of a large number of sequenced fungal genomes

provides an opportunity to gain insights into this evolutionary

question by exploring the regulatory properties of scaffold and

MAP kinase orthologs throughout the fungal tree. Comparison

of Erk-like MAP kinase sequences from across the Ascomycota

fungi (to which S. cer. belongs) indicates that these kinases are

highly divergent and fall into distinct classes (Figures S1A–S1C

available online). Interestingly, only those species that have

both a Fus3 and Kss1 ortholog also have a Ste5 scaffold

ortholog (Figure 1D; detailed in Extended Experimental Proce-

dures). It is unclear how both a potent allosteric activator (Ste5)
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Figure 1. Fungal Erk Kinase Signaling Repertoires Provide a Model System for Biochemically Interrogating the Evolution of Novel and

Divergent Allosteric Activation Mechanisms

(A) Allosteric interactions between signaling partners control when and where signaling molecules are activated in cells.

(B) In the S. cer.-mating MAP kinase pathway, two unique allosteric activities of the Ste5 scaffold regulate the MAP kinase Fus3, but not its paralog Kss1: (1) a

VWA domain in Ste5 (Ste5-VWA) that is required to allosterically prime Fus3 for phosphorylation by the upstreamMAPKKSte7; and (2) a FBD that stimulates Fus3

autophosphorylation as part of a negative feedback loop that shapes the morphological response of cells to mating pheromone.

(C) Fus3 and Kss1 are Erk-like kinases that are 55% identical and arose from a duplication of an ancestral MAP kinase.

(D) Abbreviated phylogeny of fungal species from Ascomycota with the signaling repertoire (number and types of ERK-like kinases present; presence or absence

of Ste5 scaffold) indicated for each species (see also Figures S1A–S1C).
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and its regulated target (Fus3) could simultaneously evolve as a

two-part complementary system. However, because we have

access to signaling repertoires from species that clearly

diverged from the S. cer. lineage prior to the appearance of

Fus3, Kss1, and Ste5, we have the potential to uncover the

mechanism by which this allosteric partnership evolved.

Here, we expressed and purified Erk-like MAP kinases and

Ste5 orthologs (if present) from 13 diverse fungal species that

span from S. pombe to S. cer. (�1 billion years of diver-

gence—comparable to the divergence between sea squirt and

human). Using an in-vitro-reconstituted system, we determined

the ability of these orthologs to cross-activate one another,

even for species that do not contain a Ste5 protein. These quan-

titative data allowed us to determine when specific kinase and

scaffold biochemical features arose during evolution and to

formulate a model for the evolution of the allosteric regulatory

schemes observed in S. cer.

First, we find that the Ste5 allosteric interaction required for

Fus3 activation by the MAPKK Ste7 (Ste5-von Willebrand type

A [VWA] domain) is a conserved scaffold feature of all Fus3/

Kss1-containing species, whereas a second allosteric region in

Ste5 (Ste5-Fus3-binding domain [FBD]) that tunes the ultrasen-

sitivity of the mating response is, in general, not conserved

outside of S. cer. This is consistent with a model in which a

core function of the Ste5 scaffold protein has been to functionally

insulate Fus3 and Kss1 since their divergence but also suggests

that Ste5/Fus3 interactions might continue to evolve to meet

specific organismal needs. Second, and surprisingly, we find

that the Ste5 scaffold can allosterically activate orthologous

MAP kinases from species that diverged prior to the evolution

of Ste5, i.e., kinases that are likely to never have coexisted

with the Ste5 scaffold. This result suggests that the Ste5 allo-

steric interactions evolved by tapping into latent, pre-existing

dynamic properties of the ancestral MAP kinase. The magnitude

of this latent allostery appears to drift significantly within the pre-

Ste5 MAP kinases—some orthologs are primed for Fus3-like

regulation (strong allosteric response), whereas others are

primed for Kss1-like regulation (inability to respond).We propose

that hidden diversity in these latent allosteric properties provides

a toehold that new partner molecules can exploit to develop

novel, component-specific allosteric regulatory relationships,

simplifying the evolutionary paths to allosteric controls that

shape pathway behavior and distinguish functional identity.

RESULTS

The S. cer. Ste5 Scaffold Protein Allosterically Activates
the Fus3 MAP Kinase via Two Mechanisms
In prior work, we identified twomodes bywhich the Ste5 scaffold

protein allosterically activates the Fus3 MAP kinase in budding

yeast S. cer. (Figure 1B). The first allosteric interaction involves

a VWAdomain in the Ste5 scaffold protein that is required to allo-

sterically unlock Fus3 to allow for its dual phosphorylation and

activation by the upstream MAP kinase kinase (MAPKK), Ste7

(Figure 2A). This VWA allosteric coactivation is essential for the

transmission of the mating signal but has no influence on activa-

tion of the paralogous starvation-specific MAP kinase Kss1,

which is interestingly also a substrate for the MAPKK Ste7

(Good et al., 2009). In the resting Ste5molecule, Ste5-VWA activ-

ity is autoinhibited by other domains in Ste5. This autoinhibition

prevents Fus3 from being activated until mating inputs relieve

this inhibition, providing insulation from alternative inputs that

activate the upstream MAPKK Ste7, such as starvation (Zalatan

et al., 2012).

The second allosteric interaction involves a linear motif in Ste5

called the Ste5-FBD, which binds Fus3 and allosterically acti-

vates autophosphorylation of the MAP kinase on its activation

loop tyrosine (Figure 2B) (Bhattacharyya et al., 2006). This

partially activated form of Fus3 back phosphorylates Ste5 to

downregulate mating pathway output and reshapes themorpho-

logical response of cells to a factor (‘‘shmooing’’) to be switch

like (ultrasensitive) instead of graded (Malleshaiah et al., 2010).

The FBD allosteric activation is not essential for mating signaling

but instead appears to fine-tune the quantitative aspects of the

mating response.

The Ste5-VWA Allosteric Interaction Dates Back to
Fus3/Kss1 Divergence, whereas the Ste5-FBD
Allosteric Interaction Is a Recent Innovation that
Tunes Mating Behavior in a Few Specific Lineages
We first examined when Ste5-VWA allosteric activity appeared

relative to the emergence of Fus3 and Kss1 kinases families.

WepurifiedSte5-VWAdomainorthologs fromdiverse fungal spe-

cies that contain the Ste5 scaffold and determined if they could

allosterically coactivate S. cer. Fus3 phosphorylation by the

S. cer. Ste7 MAPKK (henceforth, Ste7) (Figures 2A and S2A).

As observed previously, phosphorylation of S. cer. Fus3 by

Ste7 is very slow in the absence of S. cer. Ste5-VWA (kcat =

6.0 ± 0.4 3 10�7 s�1), and the addition of saturating S. cer.

Ste5-VWA stimulates this rate by greater than three orders of

magnitude (6,250 ± 610-fold). When saturating amounts of other

Ste5-VWA orthologs were provided instead, rate enhancements

were nearly identical to that of S. cer. Ste5-VWA. Themost parsi-

monious interpretation of thesedata is that theSte5-VWAdomain

possessed potent allosteric activity toward Fus3 in the last com-

mon ancestor of these species (Figure 2C). Consistent with this,

chimeric S. cer. Ste5 molecules in which the native VWA domain

was replaced with the VWA domain from other Ste5 orthologs

were able to support robust mating in vivo (Figure S2E).

Is the Ste5-VWA domain of other orthologs subject to autoin-

hibition, as in S. cer.? A simple diagnostic for Ste5 autoinhibition

is that full-length Ste5 provides a smaller rate enhancement for

Fus3 phosphorylation than the isolated VWA domain (Zalatan

et al., 2012). Thus, we compared the rate enhancement provided

by the longest Ste5 construct we could express for each ortho-

log to that of the corresponding isolated VWA domain (Figures

S2A and S2C). As in S. cer., every ortholog we examined was

less effective than the isolated VWA domain in enhancing the

Ste7/Fus3 reaction. The extent of this autoinhibition ranged

from values comparable to the S. cer. inhibition (�10-fold) to

values that were as much as 80-fold inhibited. Additional exper-

iments indicate that the molecular mechanism of this inhibition

is likely the same as in S. cer. Ste5 (Figure S2D), and thus, the

simplest explanation for these data is that this mechanism to

control Ste5 VWA allosteric activation was a conserved Ste5

feature present in the last common ancestor of these species.
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Figure 2. Tracking the Emergence of MAPK Allosteric-Activating Domains within the Ste5 Scaffold Protein

(A) In S. cer., Ste5-VWA is required to allosterically unlock Fus3 for phosphorylation by Ste7; Ste7 cannot effectively phosphorylate Fus3 in the absence of this

domain. Fold rate enhancements (mean ± SEM) for Ste7-catalyzed phosphorylation of S. cer. Fus3 in the presence of saturating amounts of the indicated

Ste5-VWA ortholog are shown (see also titration curves in Figure S2A).

(B) In S. cer., the Ste5-FBD is a linear motif between the Ste5 RING and PH domains that binds Fus3 and stimulates its autophosphorylation activity as part of a

mechanism that results in a switch-like morphological dose-response profile to a factor. Rate enhancements for S. cer. Fus3 autophosphorylation (mean ± SEM)

provided by addition of 25 mM of the indicated Ste5-FBD are shown (see also titration curves in Figure S3B).

(C) Phylogeny of Ascomycota indicating the appearance of Ste5-VWA and Ste5-FBD scaffold activities as inferred from (A) and (B).

(legend continued on next page)
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We next examined the evolutionary history of the S. cer. Ste5-

FBD allosteric regulatory interaction. Orthologous Ste5-FBD

sequences (detailed in Extended Experimental Procedures)

were purified and assayed for the ability to stimulate S. cer.

Fus3 autophosphorylation (Figures 2B, S3A, and S3B). As

observed previously, S. cer. Ste5-FBD potently stimulated the

rate of S. cer. Fus3 autophosphorylation (149.7 ± 13.5-fold rate

enhancement). In contrast, the FBD region from all but one Ste5

ortholog failed to provide a detectable rate enhancement for

S. cer. Fus3 autophosphorylation. The one exception was the

FBD sequence from Vanderwaltozyma polyspora (V. pol.), which

provided an intermediate effect (12.8 ± 0.3-fold rate enhance-

ment). One possible explanation for the lack of allosteric activity

we observed for most Ste5-FBD sequences is that perhaps

each FBDmotif is optimized for its corresponding Fus3 ortholog.

However, no differences were observed when the Fus3 ortholog

from the same source species was used as a target instead of

S. cer. Fus3 (Figure S3D). Thus, unlike Ste5-VWA regulation,

the Ste5-FBD regulation found in S. cer. is not conserved in every

organism that contains Fus3, Kss1, and Ste5 (Figure 2C).

Most likely, the FBD interaction evolved as a recent lineage-

specific feature to tune the mating behavior of S. cer. It has

previously been shown that mutating the Ste5-FBD in S. cer.

converts a switch-like (ultrasensitive) shmooing response to a

factor into a graded (linear) response (Malleshaiah et al., 2010).

This model would predict that species lacking an active FBD

motif would show a linear shmooing response. To test this

model, we quantitatively examined themorphological responses

of K. lactis—a species that lacks an active FBD motif but retains

an active VWA domain (Figure 2D). As predicted, themorpholog-

ical dose response of K. lactis to a factor was graded (n H = 0.9 ±

0.2) in comparison to the switch-like response observed in

S. cer. (n H = 7.7 ± 0.7). The fact that K. lactis cultures must

undergo prolonged phosphate starvation to be mating compe-

tent (Booth et al., 2010; Tuch et al., 2008a) may complicate a

direct comparison of these two profiles. Nonetheless, together

with our biochemical analyses, these data suggest that the

Ste5-FBD interaction arose well after the divergence of Fus3

and Kss1 as a mechanism to fine-tune quantitative mating

responses. We note, however, that we cannot definitively rule

out repeated loss of the Ste5-FBD from multiple lineages as an

alternative explanation of these data.

Together, the simplest evolutionary model for these data is

that a potent but tightly regulated Ste5-VWA activity was present

in the last common ancestor of the species that contain both

Fus3 and Kss1MAP kinase types, whereas the Ste5-FBD activity

was likely layered on top of the core-conserved Ste5 activities to

reshape the morphological response to mating pheromone in

only certain species (Figure 2E). This suggests that a core func-

tion of the Ste5 scaffold protein has been to functionally insulate

Fus3 and Kss1 since their divergence but also suggests that

Ste5 scaffold interactions with the Fus3 kinase might continue

to evolve to meet specific organismal signaling needs.

Latent Allostery: Ste5 Allosteric Activator Domains
Can Stimulate MAP Kinases that Diverged prior to
the Evolution of Ste5
We then turned to the converse question of understanding how

the Fus3 MAPK acquired the necessary features to serve as

a target of these two Ste5 allosteric interactions. Here, we

reversed our in vivo cross-reaction components and tested the

extent to which Fus3 and Kss1 orthologs from other species

could be regulated by the S. cer. Ste5 scaffold activities. Starting

with the S. cer. Ste5-VWA domain (Figure 3A), we found that all

Fus3 orthologs were strongly allosterically regulated by the VWA

domain: they were poor substrates for Ste7 in the absence of

S. cer. Ste5-VWA (kcat <5 3 10�6 s�1), but the addition of

S. cer. Ste5-VWA enhanced phosphorylation of each MAPK by

greater than 2,000-fold. This strong allosteric activation was

identical when other Ste5-VWA orthologs were used in place

of S. cer. Ste5-VWA (Figure S2B).

In contrast, all of the Kss1 orthologs we tested were not tar-

gets for VWA activation—these MAPKs were ideal substrates

for Ste7 (kcat >1 3 10�3s�1) in the absence of any other mole-

cules and were unaffected by the addition of S. cer. Ste5-VWA

(rate enhancement <1.5-fold). From these data, we infer that

Fus3 and Kss1 likely possessed their divergent responses to

Ste5-VWA regulation in the last common ancestor of the species

that contain these kinases. The ability of Fus3 orthologs to be

activated by the VWA domain, thus, appears to be tightly

conserved after the functional divergence of the Fus3 and

Kss1 MAPKs.

We then tested whether Erk-like kinases from species that

diverged from S. cer. prior to the evolution of Ste5—henceforth

referred to as ‘‘pre-Ste5’’ Erk-like kinases—had the capacity to

be regulated by themodern S. cer Ste5 VWA domain (Figure 3A).

Unlike S. cer Fus3, these pre-Ste5 kinases were intrinsically

good substrates for Ste7-catalyzed phosphorylation in vitro

(kcat >73 10�5 s�1). However, addition of S. cer. Ste5-VWA sur-

prisingly stimulated phosphorylation of many of these kinases by

as much as a 42-fold rate enhancement. Thus, these pre-Ste5

MAP kinases are similar to Fus3 in that they have amodest capa-

bility to serve as a target for allosterically activation by the Ste5

VWA domain, despite the fact that the species from which they

come lack Ste5.

We then analogously examined when the ability to serve as a

target for the Ste5-FBD interaction arose within the MAP kinase

family (Figure 3B). Although only the S. cer Ste5 ortholog

possessed potent Ste5-FBD activity, we surprisingly found that

the Fus3 orthologs from nearly every species that we examined

were targets for FBD activation—like S. cer Fus3, they all dis-

played a FBD-enhanced rate autophosphorylation of greater

than 100-fold. In contrast, S. cer. Ste5-FBD did not significantly

enhance the rate of autophosphorylation of the Kss1 orthologs

we tested. We conclude that Fus3 was primed for regulation

by a S. cer. Ste5-FBD mechanism in the common ancestor

of these species, even before the FBD activity had evolved in

(D) Morphological response to a factor (mean ± SEM for percentage [%] of maximum cells shmooing; nR 500 cells) of S. cer. (indicated by gray dots and dashed

line) and K. lactis (shown in pink dots and solid line). Data were fit to a Hill equation to extract the parameter nH.

(E) Timeline indicating the proposed appearance of Ste5 allosteric activators relative to the appearance of the Ste5 and the Fus3/Kss1 divergence (dating

estimates from Dujon, 2006; Taylor and Berbee, 2006). See also Figures S2 and S3.
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Figure 3. Ste5 Scaffold Domains Can Allosterically Activate Erk-like MAP Kinases that Diverged prior to the Evolution of Ste5

(A) Rate constants (mean ±SEM) for Ste7-catalyzed phosphorylation of the indicatedMAP kinase substrate in the presence (white) or absence (gray) of saturating

amounts of S. cer. Ste5-VWA for the indicated Fus3 orthologs, Kss1 orthologs, or pre-Ste5 Erk-like MAP kinases.

(B) Relative rates (mean ± SEM) for MAP kinase autophosphorylation (normalized to the no Ste5-FBD rate) in the presence (white) or absence (gray) of saturating

amounts of S. cer. Ste5-FBD for the indicated Fus3 orthologs, Kss1 orthologs, or pre-Ste5 Erk-like MAP kinases.

(C) Phylogeny of Ascomycota fungi with species that contains an Erk-like kinase that can be regulated by the indicated Ste5 activator domain marked in pink. The

red dot represents the last common ancestor that likely contained an Erk-like kinase that could be regulated by the indicated Ste5 activator.

(D) Proposed timeline (date estimates from Dujon, 2006; Taylor and Berbee, 2006) indicating when the capacity for regulation by a Ste5 activator appeared in the

fungal Erk-like MAP kinase family relative to the appearance of Ste5 scaffold activator domains that target that capacity for regulation.
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the Ste5 scaffold; little change to the kinase was necessary

for the S. cer. Ste5-FBD to be able to influence the rate of

autophosphorylation.

We then tested whether S. cer. Ste5 FBD could enhance the

rate of autophosphorylation of the pre-Ste5 Erk-like kinases (Fig-

ure 3B). We observed a broad range of capacities for regulation

by S. cer. Ste5-FBD. Several kinases were not allosterically

affected by the S. cer. Ste5-FBD (D. han. Cek2, C. alb. Cek1,

A. nid. MpkB, N. cra. MpkB) even though these kinases readily

bound toS. cer.Ste5-FBD (Figure S4A). Some kinases, however,

showed intermediate effects (S. pom. Spk1, C. alb. Cek2); and

still others showed allosteric responses that approached or

even exceeded the enhancement in autophosphorylation that

is seen for S. cer. Fus3 (C. tro. Cek2, L. elo. Cek2). Thus, many

of the pre-Ste5 MAPKs display the ability to serve as a target

for both VWA and FBD-mediated allosteric activation.

These findings suggest that both the VWA and FBD allosteric

interactions evolved by tapping into latent allosteric features

that pre-existed within this family of kinases. Because the pre-

Ste5 Erk-like kinases—including the Spk1 kinase from

S. pombe, which is the most distantly related to S. cer. Fus3—

broadly show modest regulation by both Ste5-VWA and Ste5-

FBD, the most parsimonious explanation of these data is that

some capacity for both of these forms of allosteric regulation

was likely present in the ancestral kinase of all the orthologs

we inspected (Figure 3C). Although it is formally possible that

there exist other alternative allosteric regulators that capitalize

on these modest features in the pre-Ste5 lineages, several lines

of reasoning argue against this. First, we tested several likely

candidate proteins present in these organisms for such activity

and found no evidence in support of this (Figures S4B, S4D,

and S4E). Second, the extensive variation in the latent allosteric

features of the pre-Ste5 MAPKs, including the absence of these

features in particular orthologs, suggests that these features are

not under selective pressure. That is, these particular allosteric

regulations of the MAPK substrate have not been fixed in all of

the pre-Ste5 branches of the Ascomycota to the extent that

they have been fixed in the post-Ste5 species, casting doubt

on the existence of other critical allosteric regulators that are us-

ing the latent allosteric features. Third, given that the Ste5-VWA

regulation is functionally required for pathway specificity, i.e.,

discriminating between the Fus3 and Kss1 kinases, it is unclear

why such allosteric effectors would exist in lineages that contain

only a single Erk-like kinase. Finally, the observed allosteric

effects on the pre-Ste5 kinases are inmost cases relatively small:

all of the kinases were adequate MAPKK substrates in the

absence of any additional Ste5 regulation. Thus, it is unlikely

that these species functionally require such allosteric effectors.

As such, we favor a model in which the capacity for the allosteric

regulation we observed was already present in the ancestral

kinases, providing a toehold for the emergence of new forms

of allosteric regulation.

Drift in Latent Allostery Produces Evolutionary Related
Kinases that Are Primed for Divergent Responses to
New Allosteric Activators
Amodel of latent allostery within the MAP kinase family provides

a simple framework for how new allosteric regulators such as the

Ste5-FBD and Ste5-VWA domain may have evolved. However, it

also raises an important question in terms of divergent regula-

tion: how then is it that Fus3 orthologs are targets for this allo-

steric regulation, whereas Kss1 orthologs are not?

To gain insights into this question, we examined the diversity in

the distribution of properties observed for the pre-Ste5 Erk-like

kinases (Figure 4A). When only considered as substrates for

the MAPKK Ste7, pre-Ste5 Erk-like kinases generally cluster

together and appear to be similar quality substrates in the

absence of any scaffold coactivator. However, the latent capac-

ity for allosteric regulation in each of these substrates results in

additional dimensions of MAPK phenotypic diversity beyond

their basic properties as substrates for phosphorylation by the

MAPKK Ste7. This diversity is easily visualized by plotting each

of the kinases on phenotypic morphospace plots in which one

dimension is the rate of Ste7/Fus3 phosphorylation—the

apparent kinase diversity in the absence of any allosteric activa-

tors—and a second dimension is the allosteric enhancement of

either of the two Ste5 allosteric interactions—the hidden pheno-

typic diversity that is only revealed upon interaction with scaffold

effectors (Figure 4A; see also Figure S4C). For both Ste5-VWA

and Ste5-FBD activities, the highly divergent regulation of Fus3

and Kss1 orthologs places them in opposite regions of this

space, whereas most of the pre-Ste5 Erk-like kinases are

‘‘hybrids’’ that, as a set, occupy a region of space in between

Fus3 and Kss1. Importantly, these plots reveal that kinases

that may appear close together in the one-dimensional perspec-

tive as substrates for MAPKK phosphorylation can be far apart

along these hidden allosteric dimensions. Thus, drift in these

hidden phenotypic properties (latent allostery) results in a distri-

bution of family members, with some much closer to Fus3 in

behavior and others much closer to Kss1.

These findings suggest a simple and general mechanism for

the evolution of novel and divergent allosteric regulation of paral-

ogous signaling components such as the Kss1 and Fus3 MAP

kinases (Figures 4B and 4C). Neutral drift in a latent capacity

for allosteric regulation produces paralogous variants that are

primed for divergent responses to regulation. Appearance of a

new interaction partner with weak activity against this latent allo-

steric feature ‘‘reveals’’ the pre-existing diversity and provides a

toehold for Darwinian processes to exploit these differences and

drive these kinases into divergent regulatorymodes by selection,

as was observed for the divergent responses of Fus3 and Kss1

to the Ste5-VWA domain. Such selection events have the poten-

tial to fix other latent allosteric properties within the newly

selected lineage owing to founder effects or hitchhiking, which

could explain why all of the Fus3 and Kss1 orthologs we tested

also display divergent responses to Ste5-FBD regulation even

before this activity evolved.

Dissection of the V. pol. Ste5-FBD with Intermediate
Allosteric Activity Reveals Alternative Paths for
Co-Opting the Same Latent Regulatory Features
Our data demonstrate that a significant capacity for allosteric

regulation is present in kinases prior to the evolution of the effec-

tors that provide that regulation in S. cer. How, at a molecular

level, does evolution discover activators that can tap into these

hidden allosteric features and co-opt this pre-existing capacity
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Figure 4. Drift in Latent Protein Allostery Provides a Path for Evolution of Divergent Regulatory Phenotypes within Seemingly Equivalent

Kinase Paralogs

(A) Morphospace visualizations of MAP kinase biochemical diversity found in this study, either only as substrates for phosphorylation by the upstreamMAPKK or

taking into account the additional hidden dimensions of diversity in substrates upon interaction with the Ste5 scaffold. Circles in the plots correspond to individual

MAP kinases (Fus3-type kinases are indicated in pink; Kss1-type kinases are shown in purple; pre-Ste5 Erk-like kinases are represented in orange) that we

examined and indicate their associated properties. See also Figure S4C.

(B) Evolutionarymodel for novel and divergent regulation by exploitation of latent allosteric diversity. An ancestral kinase (orange) with some capacity for allosteric

regulation is duplicated. In the absence of an effector, drift yields paralogous kinases with distinct latent regulatory features. Potential regulatory partners can

reveal and exploit differences in these distinct latent features, providing a foothold for selection to refine and optimize the targets and effectors by coevolution to

produce paralogous kinases with divergent allosteric responses to an effector molecule.

(C) The model in (B) is illustrated in terms of the conformational energy landscape of the proteins. See also Figure S4.
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for new regulation? Our biochemical screen of Ste5-FBD motifs

identified a sequence with intermediate allosteric activity from

V. pol. Ste5-FBD that gives us an opportunity to biochemically

dissect how this FBD-mediated allosteric activity may have

arisen (Figure 5A). (Addressing this question for Ste5-VWA

domain regulation is difficult because of the lack of any forms

of Ste5 that show intermediate VWA activities.)

We wanted to determine whether the V. pol. Ste5-FBD func-

tions through a related mechanism to that used by the S. cer.

Ste5-FBD. We previously showed that the S. cer. Ste5-FBD

sequence binds to Fus3 in a bipartite manner to allosterically

activate the Fus3 kinase: an ‘‘A site’’ motif binds to the N lobe

of the kinase, whereas a second ‘‘B site’’ motif binds to a canon-

ical-docking groove on the C lobe of the MAP kinase (albeit in a

noncanonical reverse C-toN-terminal orientation); linking these

two binding sites is thought to constrain the two kinase domains

into a more active conformation that promotes autophosphory-

lation (Figure 5C) (Bhattacharyya et al., 2006). Inspection of the

V. pol. Ste5-FBD sequence reveals a sequence that resembles

the A site motif of S. cer. Ste5-FBD, but there is no obvious

sequence that resembles the B site motif.

To better understand the mechanism of the V. pol. Ste5-FBD

interaction, we used deletion analysis to map the regions of this

sequence that were required for its allosteric activity (Figures

5B and S5A). Like S. cer. Ste5-FBD, we found that two distinct

regionswere required for activity. One of these regions contained

the motif that resembles the A site of the S. cer. Ste5-FBD, sug-

gesting that both V. pol. Ste5-FBD and S. cer. Ste5-FBD use

this A site sequence to engage the N lobe of Fus3. Unlike in the

S. cer. Ste5-FBD, however, the second region of V. pol. Ste5-

FBD required for allosteric activity was on the opposite side of

the A site (N terminal to it, i.e., the opposite orientation relative

to the S. cer. Ste5-FBD). This second required region in the

V. pol. Ste5-FBDmotif resembles the consensusMAPK-docking

motif ([R/K]1-2-X2-6-F�x-F�x-F) that is used by many signaling

partners to interact with MAPKs (Reményi et al., 2005; Tanoue

et al., 2000). Consistent with this, mutation of the residues within

this motif that would disrupt a MAPK-docking interaction

completely abolished the allosteric activity of V. pol. Ste5-FBD

(Figure 5B).

From these data, we infer a model for how V. pol. Ste5-FBD

interacts with Fus3 to exert allosteric influence (Figure 5C). At

low resolution, both the S. cer. and V. pol. FBD mechanisms

appear very similar: they both bind at the same two sites on

the MAPK, potentially constraining the kinase N and C lobes

relative to one another in a manner that increases autophos-

phorylation. Nonetheless, whereas the S. cer. Ste5-FBD binds

Fus3 with an A site-B site bipartite polypeptide, the V. pol.

Ste5-FBD appears to bind to Fus3 with a ‘‘docking motif’’-A

site bipartite polypeptide (where the docking motif functionally

replaces the B site motif). In both cases, functionally analogous

motifs that bind the C lobe docking groove cooperate with bind-

ing of the A site motif to the N lobe of the kinase to achieve allo-

steric activation. We postulate that this distinct but analogous

bipartite binding represents a case of convergent evolution—

both bipartite peptides can constrain the kinase lobes required

to stimulate autophosphorylation, albeit to different degrees

(Figure S5B).

Is the V. pol. Ste5-FBD motif, despite its detailed differences,

tapping into the same latent allosteric features present in the

fungal MAPK family as those exploited by the S. cer. Ste5-

FBD? If so, then we predict that the effects of the V. pol. Ste5-

FBD motif on diverse members of the Erk-like fungal kinase

family should mirror those observed for the S. cer Ste5-FBD

motif. Indeed, we observe a linear relationship across fungal

species between the degree to which the V. pol. Ste5-FBD and

the S. cer Ste5-FBD motifs can activate individual MAPK family

members (Figure 5E; see also Figure S3D). Thus, even this weak

activator appears to reveal the same latent potential for allosteric

regulation that is present in many fungal MAP kinases, including

the pre-Ste5 Erk-like kinases. During the course of evolution,

once a weak effector like the V. pol. Ste5-FBD uncovers these

latent kinase regulatory features, Darwinian processes can pro-

ceed to optimize this allosteric regulation. Because different

yeast species occupy distinct environments and exhibit different

mating preferences (Booth et al., 2010), the outcomes of these

Darwinian processes will differ depending on local selective

pressures and organismal niche: the activity can be optimized

to increase potency (as in S. cer.Ste5-FBD), it can bemaintained

as a weak effector (as in V. pol. Ste5-FBD), or it can be turned

over to a state in which Ste5-FBD regulation is lost (as observed

in C. gla.; see Figure 2B).

DISCUSSION

Our analysis of kinase and scaffold properties from across Asco-

mycota fungi allowed us to determine when particular Ste5 scaf-

fold allosteric activator functions most likely arose, as well as

when the capacity of a MAP kinase to serve as a target for

such allosteric regulation arose. From this analysis, we made

the surprising observation that many kinases from species that

diverged from S. cer. prior to the evolution of the Ste5 scaffold

can still be regulated by the allosteric motifs within Ste5. These

findings suggest that a latent capacity for allosteric regulation

was present within this MAP kinase family long before the evolu-

tion of effectors that target this allostery for regulation.

Exploitation of an existing latent capacity to derive a new

molecular regulatory relationship is similar to proposed models

for the evolution of new catalytic activities by catalytic promiscu-

ity (O’Brien and Herschlag, 1999; Khersonsky and Tawfik, 2010)

and new hormone receptor signaling responses by molecular

exploitation (Bridgham et al., 2006). In this case, however, the

latent allosteric kinase features we have described in this study

are not obviously similar to some pre-existing regulatory interac-

tion but represent new regulatory connections that can redirect

and reshape information flow in cell signaling pathways.

The Dynamic Protein Kinase Structure as a Source
of Latent and Diverse Allosteric Behaviors
Wepostulate that the dynamic nature of the protein kinase struc-

ture itself may provide the latent allosteric potential and diversity

observed in these fungal MAP kinases. Indeed, both Ste5-VWA

domain and Ste5-FBD motif are thought to allosterically activate

the Fus3 MAP kinase by altering the kinase flexibility (Bhatta-

charyya et al., 2006; Good et al., 2009), and such flexibility

is an innate but variable feature of protein kinases (Huse and
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Figure 5. Dissection of the V. pol. Ste5-FBD Motif with Intermediate Allosteric Activity Reveals Alternative Paths for Co-Opting the Same

Latent Regulatory Features
(A) Position of minimal S. cer. Ste5-FBD sequence mapped previously (Bhattacharyya et al., 2006) and initial region of V. pol. Ste5 that showed FBD activity that

serves as the starting point for further analysis.

(B) Truncation mapping of the V. pol. Ste5-FBD fragment, showing the relative activity of an indicated truncation or fragment (see also Figure S5). This analysis

identifies two sites that are required for activity. One site (‘‘Site A’’) is similar to a sequence required for activity in the S. cer. Ste5-FBD fragment. A second site

(‘‘Site B’’) resembles a traditional MAPK-docking peptide sequence.

(C) Comparison of the known structure of the S. cer. Ste5-FBD,Fus3 complex to the inferred structure based on homology and the truncation mapping from (B).

The two kinases appear to use similar Site A sequences to bind the N lobe of the kinase but use distinct mechanisms to engage the docking groove of the MAP

kinase C lobe.

(D) A plot indicating the magnitude (mean ± SEM) of the S. cer. FBD effect and V. pol. FBD effect; each point corresponds to an individual kinase we inspected.

The tight linear relationship between these effects suggests that both the S. cer. and V. pol. Ste5-FBD sequences target the same allosteric features and diversity

present in the MAP kinases we inspected. See also Figure S5.
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Kuriyan, 2002). Thus, rather than requiring that evolution create

unprecedented structural features to produce allosteric inno-

vation, the ruggedness of the MAP kinase conformational

landscape itself may provide toeholds for weak, but specific,

activators that act by selecting and stabilizing particular kinase

conformations (Ma et. al., 1999) (Figure 4C). These relationships

can then be strengthened by evolutionary mechanisms that tune

and modulate the stability of certain states of the molecule or

widen the difference in activity between alternative states. These

findings are consistent with patterns observed in many other

members of the protein kinase family: all kinases appear to

require the proper assembly of the same core catalytic and

structural elements in order to adopt an active state; but different

kinases adopt a wide array of distinct inactive conformations,

each of which requires a different set of inputs to stabilize the

conserved active conformation (Huse and Kuriyan, 2002; Kornev

et al., 2006). More generally, modes of flexibility intrinsic to

particular protein folds may provide the starting point for future

regulatory evolution (Halabi et al., 2009).

The hidden regulatory diversity that we find in the fungal MAP

kinases may be a more general feature of many protein kinases

as well as other dynamically regulated macromolecules. In fact,

many drugs may act as effectors that uncover this regulatory

potential. Indeed, such hidden conformational toeholds serve

as the basis of action of the Abl-specific tyrosine kinase inhibitor

Gleevec, which stabilizes an inactive conformation that is

uniquely accessible to that kinase (Schindler et al., 2000). Simi-

larly, some small molecules have been found to allosterically

activate regulatory proteins, despite the lack of a clear physio-

logic analog that normally targets that site (Hardy et al., 2004).

Figure 6. The Role of Colocalization in the

Evolution of New Allosteric Regulation

(A) Colocalization interactions that are distinct

from the essential allosteric surface of the

Ste5-VWA assemble a Ste5,Fus3,Ste7 ternary

complex that is essential for the Ste5-VWA to

allosterically activate Fus3. These colocaliza-

tion interactions are sufficient for tight complex

assembly on their own.

(B) Binding of the Ste5-FBDA sitemotif to the Fus3

MAP kinase, which is essential for allosteric acti-

vation of autophosphorylation, requires a second-

site interaction with the docking groove of MAP

kinase. This docking interaction is, by itself, a

nonallosteric colocalization interaction that can be

sufficient for complex formation.

(C) Colocalization-based activation mecha-

nisms—whether on scaffolds, membranes, or

DNA—can facilitate the evolution of allosteric in-

teractions between the colocalized components

and yield the tighter, precise spatiotemporal

control of activation that is observed in modern

pathways.

Colocalization May Facilitate the
Evolution of New Allosteric
Regulation
The latent allosteric properties in MAP

kinases we have described must be

‘‘revealed’’ by an effector in order for selection to be possible.

How do such primitive allosteric regulators evolve? The

mechanism of the Ste5 VWA and FBD motifs suggests that

colocalization may facilitate this process because both interac-

tions involve the interplay between allosteric interactions and

colocalization interactions. The VWA domain allosterically regu-

lates Fus3 in the context of a higher-order molecular complex

(a Ste5,Fus3,Ste7 ternary complex) that is assembled by nonal-

losteric colocalization interactions that are sufficient for tight

complex formation (Figure 6A). Similarly, binding of the Ste5-

FBD A site motif to the Fus3 kinase depends on a second-site

interaction with the docking groove of MAP kinase, which is suf-

ficient for complex formation on its own (Figure 6B). A simple

model is that colocalization of the future allosteric target and

regulator was an early step in the evolution of these allosteric

relationships. Such colocalization establishes effective concen-

trations of the components in the millimolar range in which

fleeting and weak interactions occur more readily (Kuriyan and

Eisenberg, 2007; Reynolds et al., 2011), thus enhancing the

likelihood of uncovering a weak interaction that reveals a latent

allosteric feature in a target.

This evolutionary ‘‘colocalization first’’ strategy is similar to the

novel ‘‘tethering’’ approach used for developing small molecule

allosteric effectors, in which a library of disulfide-containing

small molecules is localized to a particular cysteine residue on

the drug target (Erlanson et al., 2004) allowing for the identifica-

tion of weak effectors that bind to surprising new allosteric

protein sites (Hardy and Wells, 2004). The synergy between

evolutionary and engineering approaches suggests that genet-

ically encoded libraries that ‘‘tether’’ a variable protein or RNA
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library to a target might offer an effective in vivo screening

approach for identifying new allosteric effectors.

Finally, these observations indicate that the colocalization of

signaling components on scaffolds or at the membrane may

play amore active role in the evolution of new signaling pathways

and behaviors than previously appreciated, by producing local

environments in which hidden allosteric diversity and the

ruggedness of conformational landscapes are revealed by high

effective concentrations and potential new effector interactions.

Indeed, many primitive signaling pathways may have initially

simply consisted of components that became colocalized

upon stimulation with an input signal (Figure 6C). These assem-

blies, however, might then provide a context that would facilitate

the evolution of allosteric regulation, as described here, that

yielded the diverse forms of precision control that we observe

in modern pathways. An analogous progression of regulatory

evolution is suggested to take place among DNA binding factors

that are tethered at a promoter (Baker et al., 2012; Tuch et al.,

2008b).

EXPERIMENTAL PROCEDURES

Identification, Sequence Analysis, and Cloning of Kinase and

Scaffold Orthologs

S. cer. Fus3, Kss1, and Ste5 sequences were used to query the fungal

orthogroups database to identify orthologous sequences in the Ascomycota

(additional details in Extended Experimental Procedures), which were subse-

quently cloned from gDNA or synthesized directly. Phylogenetic analysis of

these sequences is detailed in the Extended Experimental Procedures. A com-

plete list of all constructs used in this study is in Table S1.

Protein Purification

MAP kinases, Ste5 scaffold fragments, and the SR13 Fab antibody were ex-

pressed in BL21(T1R) E. coli cells. The S. cer. Kss1 ortholog and the constitu-

tively active form of the MEK Ste7 (Ste7EE) were expressed from S. frugiperda

(SF9) cells. Proteins were purified similarly as described previously by Good

et al. (2009), Reményi et al. (2005), and Zalatan et al. (2012), with minor modi-

fication as detailed in the Extended Experimental Procedures.

In Vitro Kinase Activity Assays

Initial rates for Ste7-catalyzed phosphorylation of a MAPK as well as MAPK

autophosphorylation were measured by quantitative western blotting as

described and detailed in the Extended Experimental Procedures. Under satu-

rating conditions, VWA reactions contained 50 nM of MBP-Ste7EE, 5 mM

MAPK substrate, and (if present) 5 mM Ste5-VWA ortholog; saturating FBD

reactions contained 10 mM MAPK and, if present, 25 mM of a Ste5-FBD

sequence.

Morphological Dose Response to a Factor

Morphological responses to a factor were performed for S. cer. (strain W303)

andK. lactis (strain yLB17a; Booth et al., 2010) as described previously byMal-

leshaiah et al. (2010). For K. lactis, the response was measured after 6 hr of

growth in SCD media lacking phosphate to ensure that cells were mating

competent (detailed in Extended Experimental Procedures). The percentage

of cells shmooing at a given concentration of pheromone was determined

by microscopy, and the resulting dose-response curves were fit to a Hill equa-

tion to extract the Hill coefficient parameter nH.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and one table and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.07.019.
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Bhattacharyya, R.P., Reményi, A., Good, M.C., Bashor, C.J., Falick, A.M., and

Lim, W.A. (2006). The Ste5 scaffold allosterically modulates signaling output of

the yeast mating pathway. Science 311, 822–826.

Booth, L.N., Tuch, B.B., and Johnson, A.D. (2010). Intercalation of a new tier

of transcription regulation into an ancient circuit. Nature 468, 959–963.

Bridgham, J.T., Carroll, S.M., and Thornton, J.W. (2006). Evolution of

hormone-receptor complexity by molecular exploitation. Science 312,

97–101.

Dujon, B. (2006). Yeasts illustrate the molecular mechanisms of eukaryotic

genome evolution. Trends Genet. 22, 375–387.

Erlanson, D.A., Wells, J.A., and Braisted, A.C. (2004). Tethering: fragment-

based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223.

Gerlt, J.A., and Babbitt, P.C. (2001). Divergent evolution of enzymatic function:

mechanistically diverse superfamilies and functionally distinct suprafamilies.

Annu. Rev. Biochem. 70, 209–246.

Good, M., Tang, G., Singleton, J., Reményi, A., and Lim, W.A. (2009). The Ste5
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